
RISC Simulator by Peter Higginson

Instruction Formats (Rd can be Rsd where appropriate)

Hex Binary Op Code ASSEMBLY LANGUAGE DESCRIPTION
00 0000 0 HLT halt
08 0000 1 MOD Rd, #immediate modulus
10 0001 0 ADD Rd, #immediate add
18 0001 1 SUB Rd, #immediate subtract
20 0010 0 CMP Rb, #immediate compare
28 0010 1 MOV Rd, #immediate move
30 0011 0 AND Rd, #immediate logical and
38 0011 1 ORR Rd, #immediate logical or
40 0100 0 XOR Rd, #immediate eXclusive OR (==EOR)
48 0100 1 UDV Rd, #immediate unsigned divide
50 0101 0 MUL Rd, #immediate multiply
58 0101 10 LSR Rd, Rs, #count logical shift right
5C 0101 11 LSL Rd, Rs, #count logical shift left
60 0110 000 ADD Rd, Rs, Rb add
62 0110 001 SUB Rd, Rs, Rb subtract
64 0110 010 AND Rd, Rs, Rb logical and
66 0110 011 ORR Rd, Rs, Rb (BIS==ORR) logical or (or bit set)
68 0110 100 XOR Rd, Rs, Rb eXclusive OR (==EOR)
6A 0110 101 LSR Rd, Rs, Rb logical shift right
6C 0110 110 LSL Rd, Rs, Rb logical shift left
6E 0110 1110 ADD SP, #immediate add
6F 0110 1111 SUB SP, #immediate subtract
7x 0111 see sub-code list below
8 100 BRA/B<cond>/JMS, address branch etc.
A 1010 STR Rs, offset(Rn) store register
B 1011 LDR Rd, offset(Rn) load register
C 1100 ADD Rd, direct add
D 1101 SUB Rd, direct subtract
E 1110 STR Rs, direct store register
F 1111 LDR Rd, direct load register

Branch codes 100x xxx a aaaa aaaa – a is address, x is code (2nd line) – full code in hex 3rd line
BRA BEQ BNE BCS/BHS BCC/BLO BMI BPL BVS BVC BHI BLS BGE BLT BGT BLE JMS
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
80 82 84 86 88 8A 8C 8E 90 92 94 96 98 9A 9C 9E

Branch Meanings
BRA BRanch Always BEQ Branch if EQual BNE Branch if Not Equal
BCS Branch if Carry Set BCC Branch if Carry Clear BVC Branch if oVerflow Clear
BVS Branch if oVerflow Set BPL Branch if positive (PLus) BMI Branch if MInus
BHI Branch if HIgher than BHS Branch if Higher or Same BLO Branch if LOwer than
BLS Branch if Lower or Same BGT Branch if Greater Than BGE Branch if Greater than or Equal
BLT Branch if Less Than BLE Branch if Less than or Equal JMS JuMp to Subroutine

Sub-codes of instruction code 7 (0111)
700 0111 0000 0 ASR Rd, #count arithmetic shift right
708 0111 0000 1 ROR Rd, #count rotate right
710 0111 0001 0 INP Rd, address input
718 0111 0001 1 OUT Rs, address output
720 0111 0010 000 MOV Rd, flags/SP/LR/PC move
722 0111 0010 001 MOV flags/SP/LR/PC, Rs move
7240 0111 0010 0100 0 POP Rd pop from stack

RISC Simulator by Peter Higginson

7248 0111 0010 0100 1 PSH Rs push to stack
7250 0111 0010 0101 0 BRA Rs branch (to address in register)
7258 0111 0010 0101 1 JMS Rs subroutine call
7260 0111 0010 0110 0000 RET subroutine return
7261 to 727 0111 0010 0110 0001 to 0111 0010 0111 spare
728 0111 0010 10 MVN Rd, Rs move NOT
72C to 73 0111 0010 11 to 0111 0011 spare
74x 0111 0100 xx UDV/MOD/MLX/ASR Rd, Rs unsigned divide/modulus
 extended multiply/arithmetic shift right
75x 0111 0101 xx ROR/DIV/BIC/NEG Rd, Rs rotate right/signed divide
 logical bit clear/negate
760/764 0111 0110 0x INP/OUT Rsd, Ra input/output

 768/76C 0111 0110 1x CMP/TST Rb, Rs compare/test (logical and)
77x 0111 0111 xx MOV/ADC/SBC/MUL Rd, Rs move/add with carry included
 subtract with carry included/multiply
78 0111 100 STR Rs, offset(SP) store register
7A 0111 101 LDR Rd, offset(SP) load register
7C 0111 110 PSH {R0-R7,LR} push to stack (bit mask)
7E 0111 111 POP {PC,R7-R0} pop from stack (bit mask)

Also DAT is an assembler directive to store data and NOP generates MOV R0, R0 (as used by ARM).

Notes
1) The assembler accepts two registers for three register instructions (e.g. ADD Rd,Rs generates ADD

Rd,Rd,Rs). Similarly, for example, LSR Rd,#7 generates LSR Rd,Rd,#7. The assembler also accepts (Rn)
or [Rn] as equivalent to 0(Rn) and (SP) or [SP] as 0(SP).

2) JMS overwrites the old LR. Standard linkage is to push several registers including LR on entry and
pop the registers and PC on exit (so entry LR becomes return PC). So compilers use POP multiple
instead of using RET. (Compilers expect the first four parameters go into R0 to R3.)

3) In the inst7 sub-set there are a few spares, the most has 8 parameter bits.
4) While ADD, SUB and MUL are the same for signed and unsigned, DIV is not and so an extra

instruction (UDV) is provided for unsigned division. Extended multiply (MLX) is unsigned and clears
all flags apart from the Z flag.

5) I used 3 character instructions for convenience. So HALT is HLT and PUSH is PSH.
6) Only ALU operations set the flags. In the ARM implementation of 32 bit instructions an explicit “set

flags” bit is required. We are nearer the 16 bit ARM implementation where only some instructions
set the flags. LDR and STR do not set the flags (to avoid issues with out of order execution) and MOV
does not because the values go nowhere near the ALU. (MVN does set flags.)

7) The instructions ADD/SUB SP,#imm do not change the flags. Execution will error if the SP goes out of
the memory range using these instructions. MOV SP,Rx however wraps to stay in memory range as
do LDR/STR n(SP) and LDR/STR n(Ra). PSH and POP do not wrap – execution will error (and Reset is
then needed).

8) The multi-register PSH and POP instructions take both lists {Ra,Rb,Rc} and/or ranges of registers as
parameters but obviously always push and pop in a fixed order. If the PSH was replaced by individual
instructions the lowest register would be pushed first (and so end up in the highest address).

9) Output to device 4 is treated as signed but you can output unsigned (device 5), hex (device 6) or
character (device 7). Input is a number from device 2.

Instructions in alphabetical order

ADC ADD AND ASR BCC BCS BEQ BGE BGT BHI BHS BIC BIS BLE
BLO BLS BLT BMI BNE BPL BRA BVC BVS CMP DAT DIV EOR HLT
INP JMS LDR LSL LSR MLX MOD MOV MUL MVN NEG NOP ORR OUT
POP PSH RET ROR SBC STR SUB TST UDV XOR

PLH 12/5/2016

